MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
ASYMPTOTIC ANALYSIS OF POSITIVE SOLUTIONS FOR A POLYHARMONIC PROBLEM OUTSIDE THE UNIT BALL
Z. Ben Yahia, Z. Zine El Abidine

Abstract

This paper deals with the existence and asymptotic analysis of positive continuous solutions for the following nonlinear polyharmonic boundary value problem: \begin{align*} \begin{cases} (-\Delta)^{m}u= b(x)u^{p}, \ \ \text{in} \ D, & \\ \lim\limits_{|x| \rightarrow 1 } \big(|x|^{2}-1\big)^{1-m} u(x) =0, \\ \lim\limits_{|x| \rightarrow \infty } (|x|^{2}-1\big)^{1-m} u(x) = 0. \end{cases} \end{align*} Here $m$ is an integer greater than 2, $p \in(-1,1)$, $ D$ is the complementary of the closed unit ball of $\mathbb{R}^{n} $ with $n >2m$, and the function $b$ is nonnegative and continuous on $D$, satisfying some appropriate assumptions related to Karamata regular variation theory.

Creative Commons License

Keywords: Polyharmonic equation; positive solutions; Kato class; Karamata classes; Green function; Schauder's fixed point theorem.

MSC: 31B30, 35B09, 35B40, 35J30, 35J40

DOI: 10.57016/MV-MdB8W499

Pages:  1--11